Суббота, 23.11.2024
×
Финансы-2035: кому решать? | Ян Арт и Анатолий Гавриленко

Исследование SAS, KPGM и ACAMS показало, что финансовые организации ускорили внедрение ИИ и машинного обучения в AML-процессы под влиянием пандемии

Аа +
+1 -0

Под влиянием пандемии Covid-19 треть финансовых компаний и организаций ускоряет внедрение ИИ и машинного обучения для борьбы с отмыванием денег – такие данные были получены в ходе недавнего совместного исследования SAS, KPGM и Ассоциации сертифицированных специалистов по борьбе с отмыванием средств (ACAMS). Кроме того, 39% профессионалов в области комплаенса заявили, что их компании и организации не отказываются от своих планов по внедрению AML-решений и продолжат воплощать их в жизнь несмотря на сложности, связанные с пандемией.

Отмывание средств – серьезная проблема глобального уровня: ежегодные потери от нее оцениваются в диапазоне от 2% до 5% мирового ВВП, или от 8 млн до 2 трлн долларов США. Поэтому специалисты по комплаенсу обращают все более пристальное внимание на искусственный интеллект и машинное обучение – эти технологии помогают серьезно оптимизировать AML-инструментарий и сделать борьбу с финансовыми преступлениями более эффективной. В ходе исследования, в котором приняли участие более 850 членов ACAMS, более половины респондентов (57%) заявили, что либо уже внедрили ИИ и/или машинное обучение в свои AML-процессы, либо проводят тестирование, либо планируют их внедрить в ближайшие 12 – 18 месяцев.

«Регуляторы разных стран, как правило, оценивают усилия финансовых организаций по борьбе с отмыванием денег на основе оперативной информации, которые те предоставляют в правоохранительные органы. Поэтому неудивительно, что, по мнению 66% респондентов, регуляторы ожидают использования ИИ и машинного обучения в финансовых организациях, – говорит Киран Бир, главный аналитик и директор по редакционным материалам ACAMS. – И хотя многие только начинают осваивать эти передовые аналитические технологии, их распространение дает надежду, что мы сможем получить по-настоящему эффективную защиту от финансовых преступлений».

28% крупных финансовых организаций с активами более 1 млрд долларов США считают себя новаторами во внедрении технологии ИИ, однако интересно, что в числе лидеров – не только ведущие игроки рынка. Около 16% респондентов, представляющих малые и средние финансовые организации (с активами менее 1 млрд долларов) также считают, что находятся в авангарде внедрения ИИ.

«Эти данные развенчивают миф о том, что передовые технологии недоступны малым и средним финансовым организациям, – комментирует Том Киган, старший руководитель подразделения по решениям для борьбы с финансовыми преступлениями и по аналитическим сервисам для криминалистики KPMG США. – Поскольку регуляторы одинаково контролируют и крупные, и малые финансовые организации, очень важно, чтобы эти цифры продолжали расти как для тех, так и для других».

Респонденты – независимо от величины их компаний – также отмечают, что пандемия Covid-19 выступила дополнительным катализатором внедрения. Предъявляемые ею вызовы требуют еще более высокой точности и производительности, которой невозможно достичь без современных аналитических инструментов.

Кроме того, по мнению участников исследования, двумя основными стимулами внедрения ИИ и машинного обучения выступают, во-первых, повышение качества расследований и своевременное уведомление регулятора о подозрительных операциях (этот фактор назвали 40% респондентов) и, во-вторых, снижение количества ложных срабатываний и сопутствующих им затрат (38% респондентов).

«Радикальное изменение потребительского поведения в условиях пандемии позволило финансовым организациям увидеть недостатки статичных стратегий мониторинга – они не настолько точны и не настолько адаптивны, как поведенческие системы принятия решений, – говорит Дэвид Стюарт, директор по борьбе с финансовыми преступлениям и комплаенсу SAS. – Технологии искусственного интеллекта и машинного обучения динамичны по своей природе, они способны адаптироваться к рыночным изменениям и новым рискам, их можно быстро интегрировать в действующие комплаенс-системы. Те, кто сделает это раньше, быстрее добьются значительного роста эффективности, а их финансовые организации смогут соответствовать постоянно ужесточающимся регуляторным требованиям».

Чтобы узнать дополнительные подробности о внедрении ИИ и машинного обучения в AML-комплаенс, посмотрите вебинар: «Открытие истины: глобальные точки зрения на использование ИИ в борьбе с отмыванием денег и финансовыми преступлениями».

 

Заметили ошибку? Выделите её и нажмите CTRL+ENTER
все рынки »
+1 -0
2188
ПОДПИСАТЬСЯ на канал Finversia YouTube Яндекс.Дзен Telegram

обсуждение

Ваш комментарий
Вы зашли как: Гость. Войти через
Сигнал тревоги или временные трудности? Сигнал тревоги или временные трудности? Растет число проблемных кредитов. Является ли это предвестником скорого вала банкротств? Pony.ai на пути к IPO Pony.ai на пути к IPO 15 ноября компания Pony.ai объявила о своем первичном публичном размещении акций (IPO). Размещение должно пройти на бирже Nasdaq, после чего компания получит тикер «PONY». Эмитент планирует разместить 15 млн. американских депозитарных акций (ADS) по цене от $11 до $13 за акцию, каждая ADS представляет собой одну обыкновенную акцию. Тимур Аитов: «Нас спасет «золотой» переводной рубль СЭВ» Тимур Аитов: «Нас спасет «золотой» переводной рубль СЭВ» Тема трансграничных платежей, а, точнее, их задержек, в центре внимания всех – и чиновников, и бизнесменов и даже граждан. Тем не менее, вопрос не решён, а СМИ сообщают о новых и новых задержках. Есть ли выход из ситуации? Об этом – разговор с финансовым экспертом Тимуром Аитовым, председателем комиссии по финансовой безопасности совета Торгово-промышленной палаты России,
Канал Finversia на YouTube

календарь эфиров Finversia-TV »