Вторник, 30.12.2025
×
Биржа 2025: кто в выигрыше? / Биржевая среда с Яном Артом

За что боролись: что не так с искусственным интеллектом в страховании?

Дмитрий Руденко,
генеральный директор, председатель правления страховой компании «Абсолют Страхование»

С момента изобретения технологий искусственного интеллекта они преподносились как универсальное средство для решения множества проблем. Применительно к рынку страхования – для более точной оценки потенциальных рисков как клиента, так и страховщика. Но в последнее время мы всё чаще слышим о том, что ИИ начинает дискриминировать людей, основываясь на собственных алгоритмах и анализе больших данных.

Польза от изобретения и внедрения технологий машинного обучения, анализа больших данных – всё, что сейчас принято называть технологиями-ИИ – для человечества безусловна. Например, в американской базе медицинских данных на сегодня находится более 2 млрд файлов. Это позволяет врачам с самой высокой точностью ставить диагнозы и подбирать медикаменты, которые с наибольшей вероятностью вылечат болезнь. Есть очевидные успехи в сельском хозяйстве: с помощью анализа огромного количество данных машины научились помогать фермерам собирать больший урожай и сокращать расходы. Неоценимую пользу машинное обучение приносит в тяжёлой промышленности, в станкостроении. Можно долго перечислять эти отрасли, но вот любопытно: все они, так или иначе, относятся к точным наукам. Когда же речь заходит о науках гуманитарных, машины всё чаще начинают давать сбои.

Беда в том, что эти сбои специалисты обнаруживают далеко не сразу. В 2018 году случился громкий скандал с корпорацией Amazon и её программой по поиску кадров. Оказалось, что ещё в 2014 году разработчики начали создавать инструмент, который будет искать наилучшие резюме на основе 50 тысяч различных параметров. Через несколько лет выяснилось, что программа дискриминирует женщин потому, что в изначальной выборке просто оказалось больше мужчин. В 2016 году эксперты ProPublica доказали, что изобретённый в США ещё в 2014 году алгоритм, предсказывающий рецидивы в нарушении закона, дискриминирует афроамериканцев. По той же самой причине – по качеству изначальной предоставленной для машинного обучения выборке.

Однако проблема не только в изначальной выборке: всё чаще обнаруживается, что ИИ продуцирует искажения, которые в нём явно заложены не были. В сфере страхования эта проблема получила название «дискриминация по доверенности» (proxy discrimination). В частности, приводится такой пример: присоединение к группе в Facebook, посвящённой теме мутации генов BRCA1, сулит присвоение человеку повышенного риска компаниями по медицинскому страхованию. Даже при том, что фактические данные об этой генной мутации – использование которых незаконно – никогда не вводятся в систему, алгоритмический «чёрный ящик», в итоге, выдаёт заключение, являющееся по сути генетической дискриминацией. Или, например, машина довольно быстро может определить является ли женщина беременной, просто анализируя данные о транзакциях по её банковской карте.

Не так давно специалисты ProPublica выяснили, что жители районов проживания национальных меньшинств платили более высокие страховые взносы на автомобиль, чем жители большинства «белых» районов с аналогичными страховыми рисками. Эта история стала резонансной в том числе и потому, что тогда страховые компании отказались раскрыть свои алгоритмы.

Есть и судебные прецеденты. Американский союз гражданских свобод подал в суд в штате Айдахо, требуя от властей предоставить доступ к коду программы Medicaid. Эту программу власти стали использовать для расчёта пособий, но вдруг выяснилось, что часть получателей обнаружило, что их пособия сократились в иных случаях на целых 30%. Нередки случаи, когда создатели систем скоринга для российских финансовых компаний сами признаются, что не могут понять, почему машина приняла то или иное решение. И это объяснимо – так как такие системы довольно быстро превращаются в «чёрные ящики» - даже человеку, далёкому от математики это ясно. Но трудно оправдать банковскую программу, которая отказала клиенту в кредите на том основании, что у него две или три работы, но одобрила работающему на одной работе. Да, конечно, истинные причины решения машины могут основываться на совершенно других основаниях. И наверняка это так и есть. Только вот легче ли этого человеку, который нужные ему деньги не получил? Все помнят так же, что недавно Герман Греф, глава Сбербанка, заявил, что «одна маленькая ошибка» в программе стоила банку миллиардов долларов убытка (точнее – недополученных доходов).

Математики, которые пришли в финансовые компании создавать скоринговые программы столкнулись с одной трудно разрешимой проблемой: дважды два в экономике далеко не всегда четыре. Кроме того, как мы все прекрасно знаем, экономическая наука изобилует не только законами и закономерностями, но и оценочными суждениями, которые по ошибке принимаются за первые. Учёные объясняют, что это из-за то, что наши представления о поведении человека основаны на когнитивных искажениях. Количество таких когнитивных искажений насчитывается уже свыше 150 и постоянно растёт. И проблема тут представляется не в их сложных связях, которые по зубам современным вычислительным устройствам, но в самих следствиях и причин тех или иных когнитивных искажений.

Кажется, что с ИИ человечество зашло в тупик? Да, определённый кризис налицо и скандалов, связанных с «дискриминации по доверенности», будет становится всё больше. Просто потому, что поиск ошибок в программах занимает массу времени и обходится корпорациям достаточно дорого. Но делать это всё равно придётся. В противном случае мы получим самый современный и, что самое печальное, плохо управляемый аппарат для дискриминации. Понятно, что любой, не только финансовой, компании всегда проще работать только с самыми лучшими клиентами – повысив тем самым доходность и снизив риски. Но разрабатывали-то ИИ как раз для снижения рисков в более сложных сегментах рынка.

Отметим, что периодически могут возникать ситуации, когда, на первый взгляд, решение ИИ кажется дискриминационным, однако статистика, на которой оно основано – упрямая вещь. Например, тот факт, что машины красного цвета попадают в ДТП чаще – объективная реальность. Означает ли это, что страховые компании дискриминируют владельцев таких машин? Разумеется, нет. Поэтому правда, как обычно, находится посередине – между реальными ошибками ИИ и накопленной статистикой страховых случаев, которые могут восприниматься в качестве таковых.

Заметили ошибку? Выделите её и нажмите CTRL+ENTER
все эксперты »
+3 -0
1233
ПОДПИСАТЬСЯ на канал Finversia YouTube Яндекс.Дзен Telegram

обсуждение

Ваш комментарий
Вы зашли как: Гость. Войти через
Goldman Sachs прогнозирует ускорение роста экономики США в 2026 году Goldman Sachs прогнозирует ускорение роста экономики США в 2026 году Экономика США продемонстрировала заметную устойчивость в 2025 году, и, по оценке Goldman Sachs, этот импульс не только сохранится, но и усилится в 2026 году. Аналитики банка ожидают ускорения темпов роста, несмотря на охлаждение рынка труда и сохраняющуюся неопределенность вокруг глобальной торговли. Согласно прогнозу, сочетание налоговых стимулов, смягчения финансовых условий и ослабления негативного эффекта от тарифов создаст условия для более динамичного экономического развития. Илон Маск и китайский вызов: кто первым сделает роботов частью повседневной жизни Илон Маск и китайский вызов: кто первым сделает роботов частью повседневной жизни Идея о том, что гуманоидные роботы однажды станут повсеместным явлением, давно перестала быть научной фантастикой. В 2025 году эту тему особенно активно продвигает Илон Маск, который позиционирует человекоподобных роботов как ключевой элемент будущей стоимости Tesla. По его оценкам, именно это направление способно превратить компанию в бизнес с капитализацией в десятки триллионов долларов. Однако, несмотря на громкие заявления, Tesla пока так и не начала продажи своего флагманского гуманоидного робота Optimus. На этом фоне всё больше аналитиков сходятся во мнении, что первой страной, которая действительно наладит массовое производство таких роботов, станет Китай. Фондовые рынки Азиатско-Тихоокеанского региона завершили год разнонаправленно Фондовые рынки Азиатско-Тихоокеанского региона завершили год разнонаправленно Фондовые рынки Азиатско-Тихоокеанского региона завершили последнюю сессию 2025 года разнонаправленно. Инвесторы фиксировали прибыль после сильного роста, оценивали геополитические риски и ожидали выхода важных экономических данных. При этом в целом 2025 год стал очень успешным для большинства рынков региона.
Канал Finversia на YouTube

календарь эфиров Finversia-TV »

 

Новости »

Корпоративные новости »

Blocks_DefaultController:render(13)